Dr. J. Brödel, Dr. A. Maier, M. Mühlbauer, J. Niehues

1. Diagonalisierung einer hermiteschen Matrix

Betrachten Sie die Matrix

$$A = \begin{pmatrix} 2 & -i & -i \\ i & 2 & -1 \\ i & -1 & 2 \end{pmatrix} .$$

- a) Bestimmen Sie das charakteristische Polynom $P_A(\lambda)$ und die Eigenwerte von A.
- b) Bestimmen Sie für jeden Eigenraum eine Orthogonalbasis!
- c) Bestimmen Sie eine unitäre Matrix S, so dass SAS^{-1} eine Diagonalmatrix ist.

2. Antisymmetrische und antihermitesche Matrizen

Seien $A, B \in M(n \times n; \mathbb{R})$ zwei antisymmetrische Matrizen, d.h. $A^T = -A$ und $B^T = -B$ und C eine antihermitesche Matrix, also $C^{\dagger} = -C$.

- a) Zeigen, Sie dass der Raum der reellen antisymmetrischen Matrizen ein Vektorraum ist!
- b) Sei $P \in M(n \times n; \mathbb{R})$ eine beliebige Matrix. Zeigen Sie, dass dann P^TAP ebenfalls antisymmetrisch ist. Gilt die entsprechende Relation auch für die antihermitesche Matrix C und eine Transformationsmatrix $S \in M(n \times n; \mathbb{C})$?
- c) Zeigen Sie, dass iA eine hermitesche Matrix ist!
- d) Beweisen Sie, dass aus AB = -BA folgt, dass AB eine antisymmetrische Matrix ist.
- e) Vergegenwärtigen Sie sich, dass für jeden Vektor $v \in \mathbb{R}^n$ gilt:

$$v^T A v = 0$$

- f) Zeigen Sie, dass aus $A^2v=0$ für ein $v\in\mathbb{R}^n$ folgt, dass Av=0.
- g) Welche Eigenwerte kann A haben? Begründen Sie und vergleichen Sie mit den möglichen Eigenwerten einer antihermiteschen Matrix C!